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This paper is devoted to the use of discontinuous Galerkin methods to solve
hyperbolic conservation laws. The emphasis is laid on the elaboration of slope
limiters to enforce nonlinear stability for shock-capturing. The objectives are to
derive problem-independent methods that maintain high-order of accuracy in regions
where the solution is smooth, and in the neighborhood of shock waves. The aim is
also to define a way of taking into account high-order space discretization in limiting
process, to make use of all the expansion terms of the approximate solution. A
new slope limiter is first presented for one-dimensional problems and any order
of approximation. Next, it is extended to bidimensional problems, for unstructured
triangular meshes. The new method is totally free of problem-dependence. Numerical
experiments show its capacity to preserve the accuracy of discontinuous Galerkin
method in smooth regions, and to capture strong shocksz001 Academic Press
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1. INTRODUCTION

A wide range of numerical methods has been developed for the resolution of nonlin
conservation laws. In particular, direct numerical simulation of compressible flowsisar
stake. It is then crucial to derive effective methods able to capture accurately real flc
including strong shocks.

This paper deals with high-order discretization methods for convection-dominated pr
lems on unstructured meshes. In this field, Runge—Kutta discontinuous Galerkin mett
(RKDG) have raised great interest during the past twenty years. They combine the bas
the finite volume, the finite element methods, and Riemann problems, taking into accc
the physics of wave propagation. The accuracy is then obtained by means of high-o
polynomial within elements. These methods are famous for their formal high-order sp
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and time accuracy, their capacity to handle complicated geometries, their high paralle
ability, and their nice stability properties.

The first analysis of the method, elaborated by Reed and Hill [30], has been perforn
by Lesaint and Raviart [26], for a linear transport equation. The adaptation of the sche
to the nonlinear case, which gives rise to the problem of stability, has been first carr
out by Chavent and Salzano [10]. They proposed an explicit version of discontinuc
Galerkin method. It deals with a linear spatial discretization and an Euler forward tin
discretization method. The main drawback of the method was its bad stability proper
(it was stable under a very restrictive CFL condition). Then, the method has been modif
by Chavent and Cockburn [9], by the introduction of a local projection operator (a slo
limiter), designed to improve its stability properties. The resulting scheme was proven to
total variation diminishing in the means (TVDM) and total variation bounded (TVB) unde
a fixed CFL (less than or equal tg2); see [35] for the definition of the TVB property.
Unfortunately, the scheme is only first-order accurate in time and the solution is affecte
smooth regions.

This history is recalled to introduce the RKDG scheme, developed by Cockburn and ¢
in a series of papers [12, 13, 15]. Their investigations into Runge—Kutta type discretizat
in time for discontinuous Galerkin methods, and slope limiters that maintain the forr
accuracy of the scheme extrema have helped to improve the efficiency of these methor
gave rise to RKDG method of arbitrary order of accuracy both in space and time. For
one-dimensional case, the scheme was proven to be TVB. Jiang and Shu [25] proved &
entropy inequality for arbitrary order of accuracy and arbitrary triangulations. The RKD
method has been extended by Cockburn and Shu [14, 17] to multidimensional syst
for rectangular and triangular elements. They proved a maximum principle for gene
nonlinearities and arbitrary triangulations.

The efficiency of the RKDG method has been widely illustrated by many authors. Inde
it has been tested successfully by Lomehal.[28] and Sherwin and Karniadakis [32—-34],
for the compressible Euler and Navier—Stokes equations. They coupled the method
a spectral orthogonal and hierarchical set of basis functions resulting from Dubiner [2
Numerical simulations with RKDG methods also have been done by Bassi and Rebay
who proposed a mixed formulation to discretize the viscous terms. Bistnas[6] used
the present method to achieve parallel adaptive refinement for conservation laws. For r
details on the use of RKDG methods, see for example the introduction of [11] and [7,
20, 24].

Besides being of arbitrary order of accuracy, RKDG methods are very attractive
shock-capturing. Indeed, the discontinuous representation of the solution and the upv
flux processing make the scheme well adapted to solutions with discontinuities. Wi
combined with a stabilization technique that prevents spurious oscillations near solut
discontinuities, the resulting scheme well captures strong gradients. Several forms of r
linear limiting have been carried out to ensure solution boundedness when discontinui
are present in the flow field. These techniques can be split into two classes: one way «
sists in supplementing the numerical scheme with a viscosity term (see [4]), another or
concerned with the elaboration of a projection procedure to enforce the nonlinear stabi

Cockburn and Shu have contributed precisely much to the construction of a slope limi
which is applied to the numerical solution given by RKDG method at each time iterati
[12-17]. Let us briefly describe the core of their work. The slope limiting is based ¢
piecewise linear approximations. They assume that spurious oscillations are present ir
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approximate solution only if they are present in R$ part. In regions where limiting
is necessary, the expansion is then truncated to second order. This technique perf
very well in practice (see for example [13]). The high-order accuracy is preserved at I
extrema by using a modified minmod function, instead of the classical one, as in the ini
version of the slope limiting. It comes to replace TVDM by TVBM property. However
the projection is problem-dependent because of the presence of a constant, whose
is to enforce the TVBM property. In addition, as the method is based on second-or
approximations, we can suppose that it gives rise to a lack of information for high-ort
discontinuous Galerkin methods, once the development is locally reduced to a linear te
Biswaset al.[6] proposed an extension of the method of Cockburn and Shu to higher ord
of accuracy, for one-dimensional and two-dimensional rectangular meshes. The meth
based on the®! TVDM version of Cockburn’s slope limiting (which is a very diffusive
procedure), and on a Legendre polynomials basis.

The discontinuous Galerkin approach is not the only existing method that can be hi
order accurate in smooth regions and nonoscillatory near solution discontinuities.
example, the ENO and WENO schemes (see for example [1, 22, 23]) are based on t
order polynomial reconstructions and use an adaptive stencil which permits the avoide
of interpolation accross discontinuities. In [38], Suresh and Huynh construct a new clas
scheme: A high-order interface polynomial value is first reconstructed by using a cente
stencil. Next, the interface value is limited in order the scheme to satisfy the monotonic
preserving property. A test determines whether the limiting procedure is needed or not,
then accuracy near extrema is preserved in all norms. The limiter is problem-indepenc
However, only one-dimensional or two-dimensional Cartesian meshes are considered,
the stencil is all the wider as the polynomial degree is high. It can give rise to difficulties
the boundary conditions treatment.

The case of unstructured grid of triangles is treated in [40]. Wierse proposes a new lim
function for second-order finite volume schemes. A proof of a maximum principle is give
for which no requirements on the domain discretization are necessary. It is shown hov
adapt this proof to the case Bf discontinuous Galerkin approximations.

The aim of the present work is to propose a new slope limiter for discontinuous Galer
methods of any order of accuracy, which satisfies the following properties:

it is totally free of problem-dependence,
unstructured triangular meshes can be treated,
it suppresses spurious oscillations near solution discontinuities,
no loss of accuracy takes place at extrema ir_.theorm,
5. the stencil is restricted to one triangle and its neighboors whatever the order
accuracy is.

LN

The guiding principles in those investigations are based on the papers by Cockburn
Shu [12-17], and by Biswaet al.[6], which provide a frame of reference for the presen
work.

The paper is organized as follows. Section 2 deals with one-dimensional problems.
necessary background is reviewed, namely, the description of the Cockburn and Shu limi
procedure for linear approximations, its extension by Bisetasd. to the case of any-order
of accuracy. In part two of this section, the proposed limiter is detailed. Numerical rest
illustrate its good behavior, for any kind of solutions (regular or with discontinuities
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Section 3 presents the extension of the new limiting procedure to triangular meshes, for
set of basis functions of Dubiner and in the cas®bfand P? approximations.

2. THE DISCONTINUOUS GALERKIN METHOD WITH SLOPE
LIMITER IN ONE DIMENSION

2.1. Outline of the Discontinuous Galerkin Method

In this section, the RKDG method is briefly introduced for the one-dimensional scal
conservation law
ou af (u)

ot aX

=0 INnQx(0,T), QCR (1)
subject to the initial condition
uX,t=0)=ug, VX € (2)

and periodic boundary conditions.
Let {I;}j=1.5 with I = (Xj_1/2, Xj+1/2) be a partition of the interval2 into subinter-
vals. Let us define

Vi ={peBV(@NLYRQ) : py, € P}, 3)

wherePX(1) denotes the space of polynomialsliof degree at mosgt andBV the space
of functions with bounded variation. Let

Bj ={u;x);l=1...,k+1}

be the basis of Legendre polynomials lgn

For each time € [0, T], an approximate solution, (t) that belongs td/, is computed.
A weak formulation of the problem is obtained by multiplying (1) by a test funatiofhe
result is integrated oh;, and the flux term is integrated by part to yield

/‘ hu(X, hp(x) dx — / f(u(X, 1))dx@(X) dX + f(u(x,-+1/2,t))go(xj‘+l/2)

IJ IJ
— f(u(xj-1/2, 1))@ (X_1/2) =0, 4)

where (X, 1,,) and ¢(xj";,,t) are the values of functiom, at interfacesxj./, of
interval I ;.

A discrete analogous of (4) is obtained by replacing the exact solutiont) by the
approximatiorun (x, t) and the test functiop by each element of the basis #5t succes-
sively.

The approximate solution can be written as

k+1

Un(X, Dy = Y Ui (v j(X) ¥x € 1, (5)

I=1
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where{u; /1 are the degrees of freedomuwf in the intervall ;.

Takingy = vy, j leads to

k+1 d d
/.j (.; Ui v <x)> Vm,j (X) dX — /I F (Un(x, 1) - vm (00 dx
+ h(uh)j+l/2vm.j (Xj_+1/2) - h(uh)j—l/ZUm,j (Xjftl/Z) =0. (6)

Since solution discontinuities are permitted at element interfaces, the boundary 1
f (Un(Xj+1/2, 1)) is not uniquely defined. It is then approximated by a numerical flu;
functionh that depends on the two valueswfat the point(x;j41/2, t)

hjy12 =h(Un)j412 = h(u] i—1/2> 1+1/2)s (7)

With Uiy p = Un(Xiy,0)-
The discrete weak formulation yields, by using orthogonality property;of

d ) ) 2 —
aum,J(t) (/I, Um,j (X) dX) —/lv

]

k+1
<Z U j (v, ,(x)) gy Um0 dx

1=1

_hj+§vm,1( )+h1~”m1(xj+_%)v (®)

where the integral term on the right-hand side is evaluated using Gauss quadrature.
At last, the following ODE is obtained:

d
a(uh) = Ln(Un). 9

For a complete discussion of the method, the reader is referred to [11].

2.2. Existing Stabilization Technigues

The approach in this section is to describe first the limiting procedure by Cockburn &
Shu, and second the generalization of the methoB"t@pproximations. It relies on the
construction of a slope limitek IT, whose aim is to enforce nonlinear stability properties

The TVD Runge—Kutta time discretization introduced in [36] is used to integrate i
ODE system (9) in time. It is of great importance for the method to be correctly stabilize

Let {t"}N_, be a partition of [0 T]. The Runge—Kutta algorithm reads as

1. Setu® = ATIn(Uon);

2. Forn=0,..., N — 1 computeul™ from u! as
(i) Setu® =up;
(i) Fori =1,...,1 + 1 compute the intermediate functions

i—1

uy ZAHh airuf) + Bi AtLa(up)):
=0
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(i) Setup™ =uf Y.
In all the simulations, a third-order Runge—Kutta scheme is used.

When the projectiom\ I} is set equal to the identity operator, the RKDG scheme withot
slope limiter is recovered. Thanks to this kind of time discretization, good nonlinear stabil
properties can be obtained [11].

The mesh sizé\x is assumed to be constant for sake of clarity. For the one-dimensior
case, the solution is approximated by

2 _ 2
— (X = Xj)Uzj = U +E(X_Xj)u2,ja (10)

UmIj =Uj+ Ax

where the degrees of freedomuwf areuy j andu, j, which are respectively designed for
the approximation of the mean value of the solution (denoted;pyand of the solution
gradient on the intervdl;.

The slope limiterA I, must

(i) maintain the conservation of mass element by element,
(i) not degrade the accuracy of the method,
(iii) decrease the gradient of the resulting approximate solution that must be less
equal to those issued from discontinuous Galerkin space discretization.

The following generalized slope limiter, proposed by Cockburn and Shu, does satisfy s
conditions:

_ 2
ATlhup = Oh = Uj + — (X — Xj)0zj
hun = O j+AX( i)z,

<l

2 ) _ _
i + R(x — Xj) minmoduy j, Uj41 — Uj,Uj —Uj_1) Vx e |} (11)
where the minmod function is defined as

SMiNi<n<mlan|, if s=sign(a;) = --- = sign(am),

minmoday, ..., am) = { _ (12)
0, otherwise
Equation (11) can be rewritten as
uj7+1/2 = I.Tj + mianC(UjH_/z — Jj R Uj+1 — I.Tj s LTj — I.Tj,l) (13)

GF =T —mi 0 —u. T 0 0 — 0
G 1, =Uj —minmod(Uj — uj_1/2, Uj41 — Uj, Uj — Uj_1).

The resulting RKDG scheme with the slope limiter previously described is proven to
TVDM. It can be rendered TVBM by modifying the minmod function (see [12]) so as nc
to degrade accuracy at local extrema. Then, it relies on the introduction of a colstant
which is an upper bound of the absolute value of the solution second-order derivative
local extrema. The TVB corrected minmod functioris defined as

a, if |a1] < M(AX)?

m(ay, ..., = 14
@ Bm) {minmoc{al, ...,am), Otherwise (14)

This way,{in is defined in a unique manner fB¥ approximations witlk < 2. For greater
values ofk, Cockburn and Shu suggest settiilg = 0Vl > 3. In other words, in regions
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where limiting is necessary, the development of the numerical solution is locally truncat
The very interesting property of such a method is that no loss of accuracy takes plac
extrema, even in the uniform norm. However, the difficulty lies in the evaluation of tt
constant. Indeed, it can be trivially evaluated in some cases (for example for a piecev
C?initial data), but there are some problems for which it is not easy to determine.

The extension by Biswaet al. of this method to the case of higher-order slope limiting is
of greatinterest. The paper [6] contains numerical results which point out that their propo
limiting projection does not destroy high-order accuracy where the solution is very smoc
Furthermore, in practice, solution boundedness is ensured near solution discontinuitie
relies on the TVDM version of the Cockburn and Shu method, and consists of successi
differentiating the numerical solution. The result of this derivation procedure gives a line
term which can be treated as in the case of a linear approximation.

Leté € [—1, +1] be the reference element. Noting that for Legendre polynomials,

8| I+1 k+1
L H<2m Duj+ [[@m—Dusajé+ D mg (t)dg, vmj(€). (15)
m=1 m=I+2
The limited approximation is written as
k+1
ATTaUn (X, Dy = > G0 (X) VX € 1, (16)
whose degrees of freedom are defined by
- 1 - L -
Uy = Zl—mlnmoc{(ZI + 1)U|+1qj s U jer — Uy, Uy — U|,j,1), forl =1,..., k.
(17)

In practice, following Biswas, the limiter is applied adaptively. The highest-order coe
ficient is first limited. The limiter is then applied to successively lower-order coefficien
when the next higher coefficient on the interval is changed by the limiting. This is a w
to maintain accuracy in smooth regions, and to apply limiting procedure only where it
needed. A comprehensive treatment of the method can be found in [6]. For vector syste
the limiter is applied to the characteristic fields of the system.

Animproved limiter is proposed in the next section. The resulting method is less diffusi
near solution discontinuities and still keeps a good level of accuracy in regions where
solution is smooth.

2.3. A New Slope Limiter for One-Dimensional Problems

There are two key points to ensure the success of a limiting procedure. First, asitis cru
to preserve the accuracy of RKDG method in smooth regions, a criterion is necessar
determine regions where the approximate solution must be limited. This is exactly the air
the constanM introduced by Cockburn and Shu in the modified minmod function. Anothe
criterion is proposed in what follows. It is free of problem-dependence. Secondly, wh
limiting, it is necessary to introduce enough numerical diffusion to stabilize the methc
However, a too large amount of viscosity can flatten extrema. Then, a way to balance tt
two points must be found.
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Because of the differentiation procedure, the method is suited for any order of ac
racy once the projection is defined for a linear approximation. In the present sectior
new method is proposed, which combines a basic idea of Van Leer [39] and the met
previously described.

We first address the problem of the definition of a regularity criterion. One interestil
idea concerning the slope limiter previously described relies on the fact that in regic
where the solution is smooth, we halig; = u, j, which means that the projectianlly
has no effect om, (it is locally reduced to identity operator). Consequently,

f]z.j = minmoduz,j s LTj+l — LTJ' y Jj — LTj_l) (18)

will be used as a regularity criterion. In other words, “large” gradients are those for whi
Uzj # Ug,j.

It remains to define the limiting procedure. The main drawback of (18) appears on regt
extrema which are flattened. This problem is resolved by relaxing the limitation proced
as

m _ mi - T P

max _ i + - P — _
Uz j" = mlnmoc{uHm —Uj, Ujyq0 — Uj, Uj — uj—l/z) (19)

0z, = maxmoduy;, uz®)

with the definition of maxmod function

{ S MaX<n<mlan|, if s=signa;) = --- = sign(am),
maxmoday, ..., am) = ] (20)
0, otherwise

Remark. The method must be independent of the order in which elements are treat
A cell’'s slope is then limited using the neighboring unlimited slopes, and one must stt
the limited slopes and the unlimited slopes separately until all the limited slopes have b
computed.

Solution gradients at interfaces of each cell are then evaluated by two different ways,
the gradient that less restricts the approximate gradients coming from the discontinu
Galerkin method is retained.

A very simple example of the projection effects on two configurations is propose
in order to understand the action of (19). The projection’s results for an extremum :
explained by referring to Fig. 1. While the minmod function is inclined to flatten th
smooth extremum, the maxmod function (19) does not. Besides, the proposed lim
correctly suppresses spurious oscillations (as illustrated by the example of nonsmc
extremum).

The previous method is generalizable R approximations. A regularity criterion is
associated to each degree of freedom to determine whether it should be limited or not.

Forj=1,...,Nandl =k, ..., 1, we define

Umu = mminmod(ﬂ + DU W jez — g, U — U j—1). (22)

” um}lqj - U|+l7j, then

1+1 k+1
Al'[huh“ = Zus,jvs,j + Z ﬁsqjvsqj (22)
: s=1 s=I1+42
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I')I+1/2
min
Uj+1/2

[ R R 2

Ij+l

max min

Ui =, Uir

L

j-1

119

FIG. 1. Effects of slope limiters for a smooth (top) and a nonsmooth (bottom) extremum, for piecewise line
RKDG methods; the proposed limiter (designed by max) and the Bistalg6] limiter (min) act differently for

a smooth extremum.

or else
™~ m max
Utaj = maxmoc{u,H.j, U|+1,i)v

where

1
max __ : ) + ) ) _
uny = ———minmod((2 + DUi11j. w10 — Unj. Uj — W 1)

2m+1
W12 = Uit — (2 + DU

Wjoye = U1+ @+ D oo,

and the limiting procedure goes on.

2.4. Numerical Results

(23)

2.4.1. Accuracy test for RKDG method with slope limitdiwo test problems are pro-
posed to illustrate the effective order of convergence of the methlod-(4 rate of conver-
gence is expected for B approximation). Both are related to the linear scalar transpo
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TABLE |
Accuracy for 1D Transport Equation, ug(x) = sin(wx)

P! (Second order) P2 (Third order) P2 (Fourth order)

AX L-error Order L!-error Order Li-error Order

Unlimited 1/16 2.60E-03 — 2.88E-05 — 3.31E-07 —
1/32 6.49E-04 2.00 3.60E-06 3.00 2.07E-08 4.00
1/64 1.62E-04 2.00 4.50E-07 3.00 1.29E-09 4.00
1/128 4.05E-05 2.00 5.62 E-08 3.00 8.09E-11 4.00
1/256 1.06E-05 2.00 7.03E-09 3.00 5.20E-12 3.95

pGmn 1/16 1.35E-02 — 2.68E-04 — 3.32E-06 —
1/32 2.83E-03 2.25 2.88E-05 3.21 1.72E-07 4.26
1/64 5.86E-04 2.27 2.95E-06 3.29 9.17E-09 4.23
1/128 1.21E-04 2.26 3.00E-07 3.29 4.79E-10 4.25
1/256 2.57E-05 2.24 3.03 E-08 3.30 2.56E-11 4.22

DGmax 1/16 1.10E-02 — 2.13E-04 — 1.43E-06 —
1/32 2.36E-03 2.23 2.41E-05 3.14 1.08E-07 3.72
1/64 4.86E-04 2.28 2.61E-06 3.20 7.26E-09 3.89
1/128 1.02E-04 2.25 2.79E-07 3.22 4.30E-10 4.07
1/256 2.18E-05 2.22 2.93E-08 3.25 2.44E-11 4.14

equation
U+u, =0 -1<x<1

u(x, 0) = uo(x),
with periodic boundary conditions.
Tables | and Il show the errors for the initial conditiop(x) = sin(z x) at timet = 1.
The results obtained with the unlimited DG method are compared with the errors of |
limited scheme with the Biswast al. limiter (denoted by D@&™ where min stands for

TABLE Il
Accuracy for 1D Transport Equation, ug(X) = sin(wx)

P! (Second order) P2 (Third order) P32 (Fourth order)

AX L>-error Order L>-error Order L>-error Order

Unlimited 1/16 2.85E-03 — 3.22E-05 — 4.62E-07 —
1/32 6.81E-04 2.06 4.03E-06 3.00 2.89E-08 3.99
1/64 1.66E-04 2.03 5.04E-07 3.00 1.81E-09 3.99
1/128 4.10E-05 2.02 6.29E-08 3.00 1.13E-10 3.99
1/256 1.02E-05 2.01 7.86E-09 3.00 7.96E-12 3.83

DGMn 1/16 3.17E-02 — 8.75E-04 — 1.43E-05 —
1/32 1.05E-02 1.59 1.64E-04 2.41 1.31E-06 3.44
1/64 3.47E-03 1.60 2.92E-05 2.49 1.21E-07 3.44
1/128 1.13E-03 1.61 5.10E-06 251 1.10E-08 3.45
1/256 3.68E-04 1.62 8.88E-07 2.52 1.00E-09 3.46

DGMa* 1/16 2.75E-02 - 8.01E-04 — 6.31E-06 —
1/32 1.04E-02 1.39 1.50E-04 2.42 7.91E-07 2.99
1/64 3.17E-03 1.72 2.74E-05 2.45 9.78E-08 3.01
1/128 8.97E-04 1.82 4.97E-06 2.46 1.00E-08 3.28

1/256 2.95E-04 1.60 8.8E-07 2.49 9.59E-10 3.39
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TABLE 11l
Accuracy for 1D Transport Equation, ug(x) = sin*(wx)

P! (Second order) P2 (Third order) P2 (Fourth order)
AX Lt-error Order L*-error Order L1-error Order
Unlimited 1/16 0.18E-01 — 0.43E-03 — 0.18E-04 —
1/32 0.26E-02 2.75 0.51E-04 3.03 0.11E-05 4.00
1/64 0.55E-03 2.25 0.64E-05 2.99 0.71E-07 4.00
1/128 0.13E-03 2.06 0.79E-06 3.00 0.45E-08 4.00
1/256 0.32E-04 2.02 0.99E-07 3.00 0.28E-09 4.00
DGMin 1/16 0.81E-01 — 0.90E-02 — 0.19E-02 —
1/32 0.17E-01 2.25 0.10E-02 3.12 0.74E-04 4.70
1/64 0.34E-02 2.33 0.10E-03 3.31 0.31E-05 4.57
1/128 0.66E-03 2.34 0.10E-04 3.33 0.13E-06 4.59
1/256 0.13E-03 2.31 0.10E-05 3.33 0.57E-08 4,51
DGmax 1/16 0.78E-01 - 0.77E-02 — 0.14E-02 —
1/32 0.16E-01 2.24 0.95E-03 3.02 0.62E-04 4.49
1/64 0.33E-02 2.33 0.10E-03 3.25 0.28E-05 4.46
1/128 0.65E-03 2.34 0.10E-04 3.30 0.12E-06 4.53
1/256 0.13E-03 2.31 0.10E-05 3.31 0.55E-08 4.48

minmod) and the new one (denoted by Bfor maxmod). Both of the DB" and the
DG methods do not affect the rate of convergence of the scheme in‘therm, but a
loss of accuracy shows up in thé’ktnorm (around half a power of the rate of convergence
is lost).

A much tougher case is now considered with the initial conditigtx) = sin*( x).
Results at time £ 1 are summarized in Tables Il and IV. The limiters still keep the higt
order of accuracy.

TABLE IV
Accuracy for 1D Transport Equation, ug(x) = sin*(mx)

P! (Second order) P2 (Third order) P32 (Fourth order)

AX L>-error Order L*>-error Order L>-error Order

unlimited 1/16 0.19E-01 — 0.35E-03 — 0.15E-04 —
1/32 0.35E-02 2.47 0.43E-04 3.03 0.93E-06 3.98
1/64 0.67E-03 2.37 0.54E-05 2.99 0.58E-07 3.99
1/128 0.14E-03 2.24 0.68E-06 3.00 0.36E-08 4.00
1/256 0.32E-04 2.14 0.84E-07 3.00 0.23E-09 3.99

DG™n 1/16 0.12E+00 — 0.98E-02 — 0.25E-02 —
1/32 0.42E-01 1.48 0.19E-02 2.39 0.19E-03 3.75
1/64 0.14E-01 157 0.33E-03 2.48 0.12E-04 3.94
1/128 0.46E-02 1.60 0.59E-04 2.50 0.77E-06 4.01
1/256 0.15E-02 1.62 0.10E-04 2.52 0.48E-07 4.00

DG™ 1/16 0.11E+00 - 0.82E-02 — 0.25E-02 —
1/32 0.41E-01 1.47 0.18E-02 2.20 0.18E-03 3.77
1/64 0.14E-01 1.56 0.32E-03 2.46 0.12E-04 3.90
1/128 0.46E-02 1.60 0.58E-04 2.47 0.76E-06 4.01

1/256 0.15E-02 1.62 0.10E-04 251 0.48E-07 4.00
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FIG. 2. Sod shock-tube problem. 100 points. The resulting density contours of employing the new limit
exact solution (solid line), approximate solutiat).(k = 1 (top) andk = 2 (bottom).

2.4.2. Riemann problems of nonlinear conservation law systdime system of Euler
equations is now considered. The first selected test case is Sod’s problem with in|
conditions

U=[p,u, p]" =[1,0,1], if0 <x <05
= [pr, Ur, Pr]" =[0.1250,0.1], if0.5<x < 1.
The results can be compared for example with those of Ref. [13].

Asiillustrated by Figs. 2 and 3, the proposed limiter is suitable for scalar one-dimensio
hyperbolic conservation laws with discontinuities. For linear approximations, it perforn
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FIG. 3. Sod shock-tube problem. 100 points. The resulting velocity contours of employing the new limit
exact solution (solid line), approximate solutiar).(k = 1 (top) andk = 2 (bottom).

very well, despite the fact that the maxmod function authorizes greater gradients than
initial minmod function. TheP? version of the limiter is also well adapted for shock-
capturing, since oscillations are not developed.

The next test case concerns initial conditions

U=1[pL,uL, p]" = [3.8571432.62936910.333333] whenx < —4
= [pr. Ur. Pr]" = [1 + 0.2sin(5%), 0, 1], whenx > —4.

This test problem, elaborated by Shu and Osher [37], is well adapted to demonstrate
advantage of higher-order methods since the solution has smooth structures interspe
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FIG. 4. Shu and Osher’s test case. The resulting density contours of employing the new limiter. 300 poit
Exact solution (solid line)P* (top) andP? (bottom) approximate solutions)

with discontinuities. The results obtained with the proposed method are shown in Figs
and 5. It is clear that th@? version of slope limiter performs much better than the linea
one. The improvement resulting from the useR¥ approximations is also seen. It is
better illustrated by results obtained with 200 points; see Fig. 6. Furthermore, the propc
limiter is seen to improve significantly the results obtained using the Bistvaklimiter
(see Fig. 5 for fourth-order of accuracy). A similar behavior is observed for any ord
of approximation. The introduction of the maxmod function leads to much less diffusi
results whatever the order of accuracy.

In summary, the accuracy is maintained in regions where the solution is smooth. The |
jection AT, of course leads to additional error but does not reduce the order
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FIG. 5. Shu and Osher’s test case. 300 points. Exact solution (solid linePargproximate solutionof.
The resulting density contours of employing the new limiter (top) and the Bistalslimiter (bottom).

convergence of RKDG scheme. This is accomplished in a fully problem-independent w
On the other hand, the numerical solution is getting better and better in the neighborh
of the solution’s discontinuity, when the degree of the polynotkialincreased.

3. EXTENSION TO MULTIDIMENSIONAL SYSTEMS

The adaptation of the method to multidimensional unstructured meshes raises nume
problems, among them the problem of stability. This section presents the extensiol
triangular meshes of the new stabilization method described for one-dimensional proble
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Density

Density

FIG.6. Shuand Osher’s test case. 200 points. Exact solution (solid line) and approximate selutica @
(top) andk = 3 (bottom).

To achieve that, we take advantage of the paper by Cockburn and Shu [17], which contair
adaptation of their slope limiter to the case of unstructured grids for linear approximatio

After the description of the process B approximations, thé? case is considered.

3.1. The Dubiner Set of Basis Functions
We start by introducing useful notations. I&tbe a triangulation of2. The approximate
solutionUn (X, t), for fixedt € [0, T], belongs to the finite dimensional space

Vh = {vh € L™(RQ) : vn, € V(T), VT € Tp}, (24)

whereV (T) is a space locally defined. We takeT) = PK(T).
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FIG. 7. Transforms between standard trianglend standard quadrilater@l.

The approximate vector solutidd, is expressed as

Un(x, t) = Z Ui)di(x) vVxeT, (25)
i=1

whereU; (t) are the degrees of freedom afdl;}]_; a basis forV(T). The scheme im-
plementation can be made more effective thanks to the choice of the polynomial basis
accordance with the papers by Sherwin and Karniadakis [32—34], a spectral basis devel
by Dubiner [21] is used. It is recalled in what follows.

The following standard triangle and quadrilateral are considered

T’:{(r,s), -1<rs;r+s<0} (26)

and

R={@hb), —1<ab=<+1}. (27)

The basis functions can equivalently be writterimr R thanks to the transforms (see
Fig. 7)

TR

Fim: =2 -1
/R (r,S)—>{

a=-csig
b=s
and

R—>T

Feon _ 1+a)(1 b _q
RIT" (@, b) — { :

Finally, the basis function®im}¢ meswithS={l >0, m>0,l <L, +m<M, L <
M} are defined by

gm = P*%@)(1 — b)' P2+10(b)
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whereP%#(x) is thenth order Jacobi polynomial far andg integer parameters,

. "nda\/n+B) [ x—1\ /x+1\"
o= ()T () ()
j=

This basis is orthogonal and hierarchical. In addition, by evaluating the basis functic
on the quadrilateral element, the volume integrals can be degenerated into the produ
two one-dimensionnal integrations and then efficiently evaluated.

3.2. Limiter for a P* (Second-Order) Approximation

Let us start with the case of the linear approximation to describe the limiting procedu
The Cockburn and Shu limiter is first reviewed. The mean valugnabn the triangleKg
is denoted

— 1
Ut = m/TUh(x) dx. (28)

For the set of Dubiner basis functions, it is reducetTJio: Upr.
We introduce

3
Un(0 =Y Uity (x) — Ur. (29)
i=1

Given a triangleKy, its neighbors are denoted By, K, andK3, and the middles of the
edgej by m; (see Fig. 8). The purpose is to resyfm in order to haveJn(x) € [a, b],
wherea = min{Ux,, Uk, Uk,, Uk,} andb = max{Ux,, Uk, Uk, Uk, ).

The method consists of Iimitinﬁlh on the middle of the edges d&€,. It comes to
determingJ;, U,, andUs on Kg such that

3
Unoo = >0y (0. (30)

i=1

K

FIG. 8. Notations for the neighbors of the triandig.
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U;l(mj)

S

FIG. 9. Notations for the approximate solution on interfgce

The modified quantitieﬁlh(mi) fori =1, 2, 3 are denoted by,;.
Finally, one gets on trianglkg,

ATIZWUp = (U + Dl)CD]_ + 02<D2 + 03<D3, (31)
with
~ 1
Ul = §(A1 + Az + Az)

~ 1
U, = —5(2A1 — Ay — Aj) (32)

~ 1
Us = E(AZ — Az).

Necessarily, in order to preserve the mean valu&ipbn Ko, we must havstl =0.
Otherwise, a modification ofy; is performed to maintain the conservation of mass elemel
by element (see [17] for more details).

The calculation of the quantitie4; is based on a geometrical property, namely the
existence of nonnegative coefficiewsandg;, i = 1, 2, 3 such that

My — Bg = a1(B1 — Bo) + B1(B2 — Bo)
My — By = a2(Bz — Bg) + B2(B3 — Bop) (33)
Mz — Bg = a3(Bz — Bo) + B3(B1 — By).

QuantitiesA; are defined in the following way:

Aq = minmodUn(my) — Uk,, v(e1(Uk, — Uk,) + B1(Ux, — Uk,)))
A = minmodUn(mp) — Uk,, v(ea(Uk, — Uk,) + Ba(Uk, — Ukp)))  (34)
Ag = minmodUn(ms) — Uk,, v(@a(Uk, — Uk,) + Ba(Ux, — Uk,))),
wherev > 1.
Now, the objective is to get a less diffusive method. For a given point P on interface

U, (P) is referred to the approximation &f(P) issued from trianglé&o, andU;! (P) the
approximation issued frori; (see Fig. 9).
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The following method, which brings in a very simple procedure, improves greatly tt
numerical results. We define

Aj.,m = minmodUg(mj) - GKO’ v(ai (UKi - UKO) + 131 (GKé - GKO)))' (35)

“Large” gradients are identified bg; m = U, (Mj) — UKO. If the equality is satisfied,
then the quantityJ;, (m;) — UKO is preserved. Otherwise, the maxmod function is intro-
duced to relax the minmod function effects according to the approximate solution regular
We introduce

Ajmax = minmodU;, (m;) — UKO, Uﬁ(mj) - UKO). (36)
Limited gradients are defined by
Aj = maxmodAj m, Ajmax)- (37)

3.3. Limiter for a P? (Third-Order) Approximation

As shown for one-dimensional problems, the differentiation process allows the adaptat
of the slope limiter to any order of polynomial approximations. Given the good numeric
results obtained in 1D, the method is generalize®focase by making use of the same
methodology.

A question which arises from the elaboration of the technique for triangular meshe:
concerned with the direction of derivatives and quantities to be limited. Two methods car
used. First, derivatives in the flow direction can be computed and limited, in order to der
a totally multidimensional proceeding. This feasibility has been ruled out since the way
establishing a well-defined method is not clear. Second, one way consists of differentia
along the vector joining the center of gravity of each triangle to the middle of its edge
It leads to a scheme which depends on the mesh geometry (as for the Cockburn and
method) which is presented in what follows.

—

Givenn; = Bomi_ (i =1, 2, 3) normalized vectors on triangke,. The quantities to be
1Bom |
limited are '

U, U
S .>——“(Bo) (38)

Wh,ni =
The affected triangle is not precised when there is no ambiguity. Vegtare computed
in reference to triangl&y. Moreover, as jumps are permitted at interfaces of element
there are two different values for the approximate solution on each edge of the triang
Symbol - is related to values oK and symbok- to values on one of its neighbors.
Now, the method can be fully defined. Let us define

U ou U ou
zh,ni=ai< “(l n >+ﬁi( “(Bz>—“(Bo>) (39)
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We set
A2y m = minmodWh n,, vZhn,) (40)
and
A2 max = minmod(Wh,nl, gTUi-&-h(mi) - %—*(B@). (412)

Finally, if A2y m 7%= Whn, then A2, = maxmodA2y m, A2y max) takes the place of
Wh.p, (fori =1,2,3).

Contrary to the one-dimensionnal case, the change fRdmo P? basis adds three
degrees of freedom. To overcome this difficulty, degrees of freedgntls, andUs are
computed by freezing the mometus, U,, andUs (momentdJ;, U,, andU; are computed
with the method elaborated for linear approximations). In brief, on triakgleve come
down to the system to be inversed

U dUp 6 .
—— (M) — a—nl(BO) = G1(Uy kg, Uz kg Us k) + Z % Vi ko
i=a

8n1
oUn oUn 5 .
—(my) — —(Bp) = G»(U U U Ui 42
anz( 2) anz( 0) 2(U1,kq» U2 Ko» 3,Ko)+i2:4€| i Ko (42)
6
oUn oUp ~
—(mM3) — —(Bp) = G3(U ,U ,U iUi k.»
8n3( 3) 8n3( 0) 3(U1 ko, Uz K, 3,|<0)+i§:4 1iUj ko
with
: o o
G =Y Uik z-(Mm)—-—(By) j=123
j < |,Ko<anj( ]) 3nj( O)) J
Bloj Blon .
yo= 2% my - 2%y =123
ong onq (43)
log 0 .
= —(my) — — (B, 1=1,23
i 0o )
L= m2) — — (B, =123
Wi 8n3( 3) 8n3( 0)

The regularity criterion of the solution is based on tetisUs, andUs. In practice, the
following test is used:

1. If 04 = Uy, 05 = Us, and 06 = Us, then limiter’s effects on the linear part of the
approximation are suppressed:
Uy = Uy, Uz = Uy, Uz =Us,
or else,
2. all the degrees of freedom b#, are limited.

By this process, as for the one-dimensional case, the limiting procedure is generaliz
to Pk approximations. One only has to differentiate the approximate solution several tin
to get a linear term which can then be limited with the method basdt @pproximations.
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R ! Solid Wall
o l i

FIG. 10. Notations for the limiting procedure at solid walls.

3.4. Boundary Conditions

The main difficulty is to impose the slip condition on the walls in a stable way. A
mentionned in [3], the inviscid interface integral terms are constructed with a technic
traditionally used in upwind finite volume schemes. The flux funchgbl) - n is replaced
by a numerical flux functiom(U~, Uy¢; n), depending on the internal interface sthte
and the boundary conditiod,.. At solid walls, the flux functiorF (U) - n is equal to the
pressure contribution in the direction normal to the wall. The pressure is taken from 1
internal boundary state.

In addition, a special treatment is necessary for the limiting procedure. Indeed, to lir
the gradients of the approximate solution on the sides of a tridfgléhe method makes
use of the three neighbots;, K,, and K3. The formulation for a solid wall boundary
condition is presented in what follows.

Given a triangleKo on the domain boundary, its edges are denoted; by = 1, 2, 3),
withe; N dQ # P ande; NoQ2 =P for j =2, 3.

For the limiting procedure, boundary conditions are imposed by providing a comple
solution on the dummy ceK (see Fig. 10). The exterior solution is reconstructed fron
the interior one by considering the Gauss points used to evaluate the volume integrals
M be a Gauss point on triangk€y, M’ its symmetric onKj. A symmetry technique is
used point by point, whereby the staig(M’) on cell K; has the same density, internal
energy, and tangential velocity componentgi M) and the opposite sign normal velocity
component.

In order to increase the stability, the limiting procedure is slightly modified to involve
vector normal to the boundary, as in Bruneau and Rasetarinera [8]. For a linear approxi
tion, the gradients dfJ, are then limited on the middles, andm; of the edge®, andes,
and on the orthogonal projection of the center of gravity of the triakglen the boundary
edgee;.

For a third-order approximation, the quantity to be limited related to the boundary ec
is

oUp oUp
W(H) - W(BO)’

withn = ByH .
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FIG. 11. Shu and Osher's test case. The resulting density contours of employing the new limiter defined
the two-dimensionnal metho! (top) andP? (bottom) approximate solutions. 300 points in the direction of the
flow field.

3.5. Numerical Results

3.5.1. Shu and Osher test cas@his test case is reconsidered with the two-dimensione
slope limiter to show that the procedure elaborated for the one-dimensional case has
well extended to triangular meshes. The mesh is obtained from a Cartesian mesh
contains 300 points in the direction of the flow field and 2 points in the other one. It conta
1200 elements. Numerical results exhibit an improved solution Ritapproximation (see
Fig. 11 for comparison). The proposed algorithm for unstructured meshes leads to bour
solutions near discontinuities. In additionP& truncated solution is shown on Fig. 12. It
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FIG.12. Shuand Osher’s test case P% approximate solution in regions of regularity aRtiapproximation
near solution discontinuities (top) an®aapproximate solution without applying the regularity criterion (bottom).
Two-dimensional solution, 300 points in the direction of the flow field.

has been obtained as follows: The approximate solution has been locally reduced to a i
term in the vicinity of shocks. It uses a high-order accurate scheme in regions where
solution is smooth, and uses a limited linear approximation near solution discontinuiti
Extrema of the resulting solution are more flattened that those of the not-truncated solut
Finally, Fig. 12 shows the improvement that results from the regularity criterion previous
described. The limiting procedure has been systematically applied (without first localizi
large solution gradients). Therefore, the whole procedure is needed.
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FIG. 13. The coarsest uniform mesh for test accuracy with the linear transport equation.

Some test results about accuracy follow for the second- and the third-order limif
schemes.

3.5.2. Accuracy test. The firstexample is the two-dimensional linear equatiom uy +
uy = 0 with the initial conditionug(x, y) = sin(z(x +y)) (-1 < X, y < 1) and periodic
boundary conditions. Uniform triangular meshes are first considered. Issued from a unif
Cartesian mesh, they are obtained by adding one diagonal line in each rectangle.
coarsest one is shown in Fig. 13. It corresponds to hy = 1/2, where h is the length of
the rectangles. The results at time- 2 are shown in Table V.

Nonuniform meshes are considered next. The coarsest mesh is shown in Fig. 14. As
of meshes is obtained by refining the mesh in a uniform way (each triangle is divided i
four smaller ones). The results are presented in Table VI.

A o 1

FIG. 14. The coarsest nonuniform mesh for test accuracy with the linear transport equation.



136 BURBEAU, SAGAUT, AND BRUNEAU

TABLE V
Accuracy for u; + uy + uy = 0, Ug(X, y) = sin(m(x +y)): Uniform Meshes

L-norm L>-norm
Scheme h Error Order Error Order
P1-unlimited % 0.31E-01 — 0.44E-01 —
% 0.60E-02 2.34 0.99E-02 2.14
% 0.13E-02 2.22 0.29E-02 1.79
2—% 0.30E-03 2.13 0.76E-03 1.91
P2-unlimited % 0.11E-02 — 0.33E-02 —
% 0.13E-03 3.04 0.42E-03 2.99
% 0.16E-04 3.01 0.52E-04 3.00
2—% 0.20E-05 3.00 0.65E-05 2.99
PL-limited % 0.61E-01 — 0.76E-01 —
% 0.17E-01 1.83 0.42E-01 0.86
% 0.45E-02 1.93 0.18E-01 1.26
ho
6 0.11E-02 2.02 0.56E-02 1.66
P2-limited % 0.33E-02 — 0.76E-02 —
% 0.43E-03 2.96 0.13E-02 2.60
% 0.53E-04 3.00 0.24E-03 2.37
% 0.61E-05 3.12 0.46E-04 2.40

The same equation is reconsidered with the initial conditigix, y) = sint(w(x + y))
and the same meshes (see Tables VII and VIII). As for the one-dimensional case, a los

accuracy takes place in the&°-norm but not in theL1-norm.

The accuracy of the method for nonlinear problems is illustrated with the system of Eu
equations. This test case is proposed by Shu in [23]. The initial condition is obtained
adding an isentropic vortex to a mean flopg & 1, ug = 1, vo = 1, po = 1). The vortex
is a perturbation to the velocity, v), the temperatur&, the entropyS, and is denoted by

the tilde values

o]

27
€

2

_ ieo.su—rz) 5-vy)

2
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TABLE VI
Accuracy for u; + uy + uy, = 0 and ug(x, y) = sin(w(x + y)): Nonuniform Meshes

L*-norm L>-norm

Scheme h Error Order Error Order

P*-unlimited h—20 0.82E-01 — 0.19E+00 —
hzo 0.17E-01 2.27 0.42E-01 2.15
%0 0.37E-02 2.19 0.92E-02 2.19
2—06 0.86E-03 2.11 0.23E-02 2.00

P2-unlimited h—zo 0.40E-02 — 0.13E-01 —
hjf’ 0.43E-03 3.22 0.19E-02 2.79
%0 0.50E-04 3.08 0.23E-03 3.01
2—% 0.62E-05 3.03 0.27E-04 3.09

P1-limited h—2° 0.91E-01 — 0.19E+00 —
hf 0.20E-01 2.20 0.46E-01 2.01
%0 0.50E-02 1.99 0.19E-01 1.26
2—% 0.12E-02 2.02 0.79E-02 1.29

P2-limited h_zo 0.10E-01 — 0.24E-01 —
hf 0.14E-02 2.89 0.42E-02 2.54
%0 0.16E-03 3.06 0.93E-03 2.17
No 0.19E-04 3.11 0.17E-03 2.43

16

B (y — 1)626142
8ym?

_’I'L
S

0,

withe =5,r = \/(x =52+ (y — 5)2.

An analytic solution of the problem is known. The computational domain is taken
[0, 10] x [0, 10] with periodic boundary conditions in both directions. Error are shown :
timet = 2 for uniform and nonuniform meshes (same kind of meshes as for the previc
example) in Tables IX and X. The rate of convergence is preserved in'therm.

Three bidimensional problems are now presented to illustrate the capacity of the r
limiter to capture strong gradients, whatever the order of accuracy of the approxim
solution (two or three for the present paper). It is important to notice that only unstructul
nonuniform triangular meshes are considered.
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TABLE VII
Accuracy for u; + uy + Uy = 0 andug(X, y) = sin*(w(x +y)): Uniform Meshes

L-norm L>-norm

Scheme h Error Order Error Order

P1-unlimited % 0.31E+00 — 0.26E+00 —
% 0.11E+00 1.50 0.88E-01 1.58
% 0.19E-01 2.52 0.19E-01 2.19
2—% 0.29E-02 2.71 0.34E-02 2.51

P2-unlimited % 0.64E-01 — 0.54E-01 —
% 0.44E-02 3.86 0.35E-02 3.93
% 0.31E-03 3.83 0.53E-03 2.72
2—% 0.33E-04 3.25 0.71E-04 2.92

P1-limited % 0.39E+00 — 0.33E+00 —
% 0.14E+00 1.43 0.14E+00 1.27
% 0.33E-01 212 0.52E-01 1.40
2—% 0.77E-02 2.10 0.19E-01 1.42

P2-limited % 0.15E+00 — 0.14E+00 —
% 0.27E-01 2.43 0.36E-01 1.94
% 0.42E-02 2.69 0.87E-02 2.05
% 0.34E-03 3.62 0.96E-03 3.17

3.5.3. Reflection of a plane shock from a ramiphis problem was studied in Quirk [29]
and Abgrall [1]. A planar shock initially enters from the left in a quiescient fluid and i
reflected from a 45 degrees ramp. The Mach numbBfsis= 5.5, and the undisturbed air
ahead of the shock has a density of 1.4 and a pressure of 1. Reflecting boundary condi
are applied along the ramp and the bottom and the upper of the problem domain. Va
for the initial flow are assigned at the left- and right-hand boundaries. The simulation
performed with linear approximations. Results obtained with the Bigwas limiter and
the new method are compared in what follows.

For such an incident shock wave Mach number and such a reflecting wedge angl|
double Mach reflection is expected (further details about shock wave phenomena ca
found in [5]). For a linear approximation, the slipstream coming from the Mach stem
better resolved with the new limiter (see Fig. 15).
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TABLE VI
Accuracy for U + Uy + Uy = 0 and up(X, y) = sin*(w(x + y)):
Nonuniform Meshes

L-norm L>®-norm

Scheme h Error Order Error Order

P1-unlimited % 0.55E+00 — 0.51E+00 —
% 0.20E+00 1.46 0.25E+00 1.02
% 0.52E-01 1.92 0.84E-01 1.60
2—% 0.85E-02 2.62 0.17E-01 2.33

P2-unlimited % 0.18E+00 — 0.21E+00 —
% 0.24E-01 2.90 0.37E-01 2.54
% 0.14E-02 4.11 0.28E-02 3.70
2—% 0.11E-03 3.65 0.39E-03 2.84

P1-limited % 0.59E+00 — 0.54E+00 —
% 0.21E+00 1.48 0.26E+00 1.03
% 0.54E-01 1.96 0.83E-01 1.66
% 0.11E-01 2.29 0.21E-01 1.97

PZlimited % 0.23E+00 — 0.27E+00 —
% 0.43E-01 2.45 0.75E-01 1.82
% 0.67E-02 2.67 0.14E-01 2.39
% 0.82E-03 3.03 0.30E-02 2.24

3.5.4. Step marching problemlt concerns a flow past a forward-facing step. This tes
case has been extensively studied by Woodward and Colella [41], and is widely presel
the literature (for comparison, see for example [8, 17]). The problem starts with unifol
Mach 3 flow in a wind tunnel containing a step. The wind tunnel is 1 length unit wide at
3 length units long. The step is 0.2 length units high and is located at 0.6 length units fr
the inflow plane. Reflecting boundary conditions are applied along the walls of the tunr
and inflow and outflow boundary conditions are applied at the entrance and the exit of
tunnel.

The corner of the step is a singularity. It is well known that if no special treatment is dor
an entropy production is observed in the vicinity of the step corner, and it alters the qua
of the second reflected shock. However, neither artefacts to impose the slip condition a
corner, nor positivity correction procedure have been employed.
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TABLE IX
Accuracy for the Vortex Advection: Uniform Meshes

L-norm L>-norm

Scheme h Error Order Error Order

P*-unlimited % 0.93E-02 — 0.20E+00 —
% 0.25E-02 1.92 0.48E-01 2.07
% 0.55E-03 2.17 0.11E-01 2.11
% 0.12E-03 2.13 0.30E-02 1.91

P2-unlimited %" 0.16E-02 — 0.18E-01 —
% 0.25E-03 2.64 0.53E-02 1.77
% 0.29E-04 3.13 0.69E-03 2.94
2—; 0.31E-05 3.20 0.92E-04 291

P1-limited % 0.98E-02 — 0.22E+00 —
% 0.29E-02 1.78 0.61E-01 1.86
% 0.72E-03 1.98 0.18E-01 1.74
% 0.18E-03 1.97 0.69E-02 1.40

P2-limited %" 0.63E-02 — 0.12E+00 —
% 0.10E-02 2.60 0.24E-01 2.29
% 0.83E-04 3.64 0.23E-02 3.34
2—?5 0.77E-05 3.44 0.33E-03 2.85

The value of the CFL number is 0.3 for ti* and 0.18 for theP? approximations.
Two unstructured meshes have been considered. The first one (mesh A) contains 13
triangles. It is locally refined near the corner. The second mesh (mesh B) contains 14,
elements. Details of the meshes around the corner are shown in the Fig. 16. The
roneous entropy production near the corner induces a numerical boundary layer vis
on the density contours, and especially on the Mach number and the entropy func
contours.

Results are shown in Figs. 17-23. The entropy layer at the downstream bottom wa
clearly reduced by th@? approximation, and by a local refinement of the mesh near th
singularity. The reflected shock on the lower part of the step is improved with the high
order method. Results obtained with the minmod limiter ard k are shown on Fig. 20.
The maxmod function clearly improves the contact discontinuity.
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TABLE X
Accuracy for the Vortex Advection: Nonuniform Meshes

L-norm L>®-norm
Scheme h Error Order Error Order
P*-unlimited % 0.78E-02 — 0.13E+00 —
% 0.21E-02 1.87 0.49E-01 1.40
% 0.49E-03 2.13 0.11E-01 2.17
% 0.12E-03 2.07 0.31E-02 1.78
P2-unlimited % 0.16E-02 — 0.28E-01 —
% 0.23E-03 2.76 0.60E-02 2.24
% 0.28E-04 3.04 0.77E-03 2.96
2—% 0.32E-05 3.15 0.10E-03 2.96
PL-limited % 0.94E-02 — 0.20E+00 —
ho
" 0.29E-02 1.71 0.65E-01 1.61
% 0.73E-03 1.97 i0.23E-01 1.53
% 0.18E-03 2.02 0.89E-02 1.35
P2-limited % 0.81E-02 — 0.13E+00 —
% 0.12E-02 2.72 0.26E-01 2.33
% 0.11E-03 3.48 0.26E-02 3.30
2—% 0.14E-04 3.01 0.46E-03 2.50

3.5.5. Shock passing a backward facing corndtis last test case is presented to
demonstrate the ability of the new method to evaluate strong gradients. The computati
domainis2 = ([0, 1] x [6, 11)) U ([1, 13] x [0, 11]). Aright-moving shock oMs = 5.09
is initially located atx = 0.5. The undisturbed air ahead of the shock has a density of 1
and a pressure of 1. Inflow and outflow boundary conditions are applied=a® and
x = 13, respectively. The boundary conditions are reflective everywhere else.

The simulation is performed with the?-version of the limiter, for two different meshes
(which contain 8464 and 23638 elements, respectively). See results on Fig. 24. Cont
to [17], no positivity correction procedure is needed to avoid negative density or press|
Also, the scheme is not modified at the corner of the step, which is a singularity of the pr
lem. The limiting procedure is then well adapted to strong shocks even with unstructu
meshes.
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FIG. 15. Reflection of a plane shock from a ranf! results with the minmod limiter (top) and the new one

(middle). A 2Q 511-triangle mesh (bottom). Densijty 20 equally spaced contour lines fragm= 2.56 top = 19.
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FIG. 17. Forward-facing step problen! results with mesh A (top) and mesh B (bottom). Dengity30
equally spaced contour lines frop= 0.090338 top = 6.2365.



FIG. 18. Forward-facing step problen®? results with mesh A (top) and mesh B (bottom). Mach number:
25 equally spaced contour lines fron®@ to 382.
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FIG.19. Forward-facing step probler®? results with mesh A (top) and mesh B (bottom). Entropy production
near the step corner: 17 equally spaced contour lines fr661t0 15.
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FIG. 20. Forward-facing step probler®! results with the minmod limiter and mesh B. Dengity30 equally
spaced contour lines from = 0.090338 top = 6.2365 (top). Mach number: 25 equally spaced contour lines
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to 15 (bottom).
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FIG. 21. Forward-facing step problen®? results with mesh A (top) and mesh B (bottom). Dengity30
equally spaced contour lines frogn= 0.090338 top = 6.2365.
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FIG.23. Forward-facing step probler®? results with mesh A (top) and mesh B (bottom). Entropy production
near the step corner: 17 equally spaced contour lines fr661t0 15.

4. CONCLUSION

In this paper, a new slope limiter to treat solutions with discontinuities with RKD(
method of arbitrary order of accuracy has been presented. The method is first describe
one-dimensional problems. Numerical results demonstrate that the proposed stabiliz:
procedure does not degrade the accuracy of the method at smooth extremiaimtiren.
Furthermore, solutions with discontinuities are well captured, without spurious oscillatio
whatever the order of accuracy of the method. At last, the resulting numerical approximat
is better as the degree of the polynomial expansion increases.

Next, the new method has been extended to the case of two-dimensional unstruct
triangular meshes, fdP* and P2 approximations. It has been noticed that the procedure
generalizable to any order of accuracy.

The paper developed extensive details concerning two points, the definition of a regule
criterion to determine regions where the solution needs to be stabilized, and a way of limi
without introducing too much numerical viscosity. This is done without any dependence
the procedure to the considered problem. That is the main first advantage of the prop:
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heme, the second one being the capacity of the method to handle unstructured trian

meshes.

=
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